

DETECTION OF SUSPICIOUS BEHAVIOR FROM SHIP TRANSPONDER DATA

MICHAEL BOSCH (SUPERVISED BY FRANK TAKES & GERRIT-JAN DE BRUIN)

LEIDEN INSTITUTE OF ADVANCED COMPUTER SCIENCE

s1875876@liacs.leidenuniv.nl

SOCIETAL RELEVANCE

'Urk has a problem': Dutch fishing town caught up in cocaine-smuggling trial

Five people, including three fishermen from Urk, are suspected of attempting to smuggle 261 kilos of cocaine in their boat

▲ Urk's isolation, and close-knit community, may have made it a more appealing target for smugglers. Photograph

It may be the Netherlands' most religiously devoted community, where television and dancing are spurned by some as the devil's work. But the wrath of God for indulging in those pursuits is unlikely to be the most pressing concern at the moment for some of the 20,000 residents of Urk, for centuries a major centre for Dutch fishing.

Article about Urk, The Guardian, 31 December 2017

INTRODUCTION

The news item raised the question whether this was an one-time event or if this is happening more often?

Since there are many ships on The North Sea, the possibilities for smuggling are certainly there. But does this really happen?

And if so, is it possible to automatically detect smuggling and suspicious behaviour using data mining techniques and therefore stop smuggling in the future?

RESEARCH QUESTION

In this research, data mining techniques on Automatic Identification System (AIS) data and examine if it is possible to detect suspicious behaviour. This research will contribute to a better understanding of AIS data and the the valueable information it contains. To do this, data mining techniques will be used to find patterns in the data and this patterns will be used to detect outliers. Therefore, the research question is as follows:

To what extent can we detect suspicious behaviour from harbors, using data mining techniques on ship transponder data?

APPROACH

In order to give an answer to my research question, the following steps will be taken:

- 1. Do research in the relevant field to learn more about the automatic tracking system ships use and what kind of data it sends (and thus the data contains).
- 2. Perform simple analyses to calculate averages, plot distributions etc. in order to see what attributes are interesting for further analyses.
- 3. Analyze the interesting attributes in more detail. This can either be:
 - (a) Calculate confidence intervals in order to detect outliers
 - (b) Use machine learning to predict several characteristics of a ship using e.g. only the route as input

THE DATA

The data that will be used in this research came from the The total size of the dataset is over 91 GB.

Human Environment and Transport Inspectorate Ministry of Infrastructure and Water Management

Ministry of Infrasture and Water Management

General information

Ministry of Infrasture and Water Management. The data consists of 448 million entries and was collected in several weeks. Moreover, there are 46 attributes for each record, which will be shown in more detail in the next paragraphs.

Type of data

Each data entry includes information about the location, speed, call sign, name and heading of the ship as well as the ships' length, breadth and the estimated arrival time at the destination.

Sample of the dataset

t_track	id	t_starttin	е	t_updatetim	ne	t_duration	t_callsign	t_mmsi	i t_r	name	t_la	titude	t_longitude	t_ori	entation	t_rateoftur
0 201703	31105428223	12 2017-03-	1 10:54:28.081	2017-04-01	00:00:00.01	3 2	2ITA4	235112	2573 AT	LANTIC STAR	54.1	168641033	5.218501		27	
t_length	t_breadth	t_sensors	t_navstatus	t_atonoffp	os t_plani	d	t_r	no_orien	ntation	t_org_tracl	k_id	t_imo	t_speed	t_hea	ading t_	_status_los
296	38	2	0		201703	3114292020	0731			22	342	9670573	9.2	28.2	f	
l							ı					ı				
t status n	nt stable t	status lahel	lost t freetext	t planund	atetime	t vesseltv	me n ca	allsian n	, eta		n de	stination	n name		n mmsi	n imo
t_status_ne	ot_stable t_	status_label	lost t_freetext		atetime 1 19:15:53.0	t_vesselty	/pe p_ca			-01 19:00:00	• –	stination HENBURG	p_name ATLANTIC		p_mmsi 2351125	
t_status_n	ot_stable t_	status_label	lost t_freetext								• –				• –	
f	f		lost t_freetext	2017-03-3	1 19:15:53.0	1	2ITA-	4 20	017-04-	-01 19:00:00	GOTI	HENBURG	ATLANTIC	STAR	2351125	

Sample of the dataset

FIGURES

Distribution of the average speed of each shiptype

Ship locations on The North Sea

POSSIBLE OUTCOMES

- A method to detect outliers for a specific numeric value. For example, the duration of a trip based on the route and the type of the ship or the average speed of a ship compared to its type.
- A machine learning model to predict several attributes of a ship based on one or a few attributes. For example, to predict the duration of a trip given only the route.