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Abstract. This paper examines the co-driving behavior of truck drivers
using network analysis. From a unique spatiotemporal dataset encom-
passing more than 10 million measurements of trucks passing 17 different
highway locations in the Netherlands, we extract a so-called co-driving
network. In this network, nodes are truck drivers and edges represent pairs
of trucks that are systematically driving together. The obtained co-driving
network structure has various properties common to real-world networks,
such as a dominant giant component and a power law degree distribution.
Moreover, network distance metrics and community detection reveal that
the network has a highly modular structure. We furthermore propose
a method for understanding the network community structure through
attribute assortativity. Results indicate that co-driving links are mostly
established based on geographical aspects: truck drivers from the same
country or the same region in the Netherlands are more inclined to drive
together. The resulting improved understanding of co-driving behavior
has important implications for society and the environment, as trucks
coordinating their driving behavior together help reduce traffic congestion
and optimize fuel usage.

Keywords: co-driving networks, infrastructure networks, network anal-
ysis, community detection, assortativity

1 Introduction

Techniques from the field of network science are used in a broad range of domains
to extract knowledge from the network structure of real-world systems [1,12]. In
this paper we use a network approach to investigate the factors that stimulate
co-driving behavior of truck drivers. We furthermore look at what patterns can
be found in groups of truck drivers who systematically drive together. To do so,
we use network community detection [5] as well as various metrics related to
assortativity (also known as mixing patterns, see [10]).
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In this paper we analyze a unique dataset that was gathered over the period
of one year, detailing the presence of at least 900,000 trucks. The dataset consists
of more than 10 million measurements and encompasses all trucks which were
driving at one of 17 highway locations in the Netherlands. This system is able to
measure (a) the weight of each axle of a truck as well as (b) the speed and (c)
the license plate. The latter allows trucks to be uniquely identified.

This paper investigates the above mentioned spatiotemporal data as a so-
called co-driving network, wherein the nodes represent trucks, which essentially
identify the truck drivers whose behavior we are interested in understanding. A
co-occurrence of trucks takes place when two trucks are at the same location.
More specifically, we refer to these truck co-occurrences as truck co-driving if two
trucks are both measured within a small time window. Those pairs of co-driving
trucks that occur for a certain number of times (e.g., more than once), are defined
as systematic co-driving trucks. In the co-driving network, the edges represent
this systematic co-driving behavior. We will explain the precise definitions and
thresholds to derive these networks in more detail in Section 3.

The results of this work contribute to topics related to understanding human
behavior, autonomous driving and environmental sustainability. Using network
metrics, we derive what factors may influence the decision of truck drivers to
systematically drive together. These findings can prove useful for research on
innovative forms of transportation, such as autonomous driving. The expectation
is that by co-driving trucks can save up to 15% on fuel as a result of reduced
aerodynamic drag [13]. In addition, co-driving trucks reduce traffic congestion.
This highlights the potential environmental implications of understanding co-
driving behavior.

The co-driving network turned out to have at least three properties that are
often encountered in real-world networks. First, our co-driving network is scale-
free, i.e., the degree distribution follows a power law [1]. Second, the network has
a large giant component which contains 37,858 nodes (trucks) and the majority
of the co-driving links of the network. Third, the average shortest path in the
network is around 9 edges, which, given the large number of nodes, is relatively
small and hints at a small-world like structure [8]. We also show that the network
has a highly modular structure with a clear division into communities.

Apart from the network structure, we have access to additional meta-data
on the the trucks. This enables us to investigate node attribute assortativity,
resulting in insights into what factors contribute to the network structure and
more importantly, explain co-driving behavior. Subsequently, we will use this
meta-data to better understand the discovered communities. This allows us to
understand how local groups of co-driving trucks emerge and contribute to the
global network structure. Furthermore, the proposed approach for evaluating
and understanding the results of community detection using node attribute
assortativity are broadly applicable in other types of networks, providing a
methodological contribution to the field.

The remainder of this paper is organized as follows. After discussing related
work in Section 2, Section 3 explains how the network was constructed from the
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raw data. Section 4 is concerned with the proposed approach and techniques to
understand the network structure. Then, Section 5 provides details on the results
obtained. Conclusions and suggestions for future work are provided in Section 6.

2 Related Work

Below we will particularly focus on three network science studies that infer
behavioral patterns from the underlying network structure.

The first work is [2], in which face-to-face contacts were recorded with a
20 second interval using measurement infrastructure at several social settings.
One of the results was that aggregated network topology and temporal behavioral
properties are strongly related. Additionally, they showed that community detec-
tion was able to make a sensible division of the network that was explainable by
various properties of the nodes. This paper employs a similar approach, where
the network topology and community structure are also explained by properties
of the individual nodes and their assortative linking patterns.

Second, in a more recent study, researchers handed over 1000 phones to
students who agreed to have their communication and spatiotemporal activities
traced. The work showed that network metrics are more informative indicators of
university performance than individual characteristics such as personality [7]. It
underpins the added value that network metrics can provide over more classical
data aggregates.

Third, research on the Brazilian Federal Police criminal intelligence network [4]
used network science techniques to uncover behavioral patterns amongst criminals.
Similar to our data, their network also featured a large giant component, as well
a degree distribution that follows a power law. Their observed low density and
high average shortest path length were explained as ‘no trust among thieves’.
Additionally, they showed that their giant component had a highly modular
structure, which was explained by the necessity of being both efficient running
criminal activities within the group while at the same time also being obscure to
the outside world.

Throughout this paper we will employ techniques similar to the ones pointed
out in the works mentioned above, aiming to extract behavioral insights. To the
best of our knowledge, this paper is the first to investigate the phenomenon of
truck co-driving using network science methods and techniques.

3 Network Construction

This section explains how the network has been constructed. We start in Sec-
tion 3.1 with the characteristics of the data. In Section 3.2 we describe how to
construct the network, leading to the structure described in Section 3.3. Sec-
tion 3.4 reports two robustness checks, and finally Section 3.5 details a particular
regional co-driving network for which additional attributes could be obtained.
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3.1 Truck Observation Data

The data was created by observations in 2016 from the Weigh-In-Motion sys-
tem (see https://international.fhwa.dot.gov/pubs/pl07028 as well as Section 1
for details on this system). The system is maintained by the Dutch Ministry
of Infrastructure and Water Management. The data contains over 16 million
observations of trucks passing at one of 17 measurement points situated at evenly
distributed locations in the Netherlands. For each observation, the following data
was available:

– license plate (serving as a unique identifier)
– location ` (either one of 17 highway locations)
– lane h, indicating which of the (at most 2) lanes the truck was in
– speed v (in km/h)
– timestamp t at a 10 millisecond resolution
– country (using the ISO-2 country code)

We briefly investigate several properties of the truck observation data. A frequency
distribution of how often each distinct truck (identified by its license plate) is
measured, is given in Figure 1a. The distribution is highly skewed to the lower
values, meaning that most trucks are only measured a few times. In Figure 1b
the distribution of the interval between two successive measurements of the same
truck at the same location is shown. It demonstrates how most trucks return
at similar times at the same location, visible from the peaks at multiples of
24 hours. Similarly, the peak at 7 days indicates weekly driving patterns of trucks.
In general, this figure indicates that most individual trucks have regular driving
patterns.

3.2 Construction from raw data

In the co-driving network, nodes are trucks and edges represent systematically
co-driving trucks. To determine which truck pairs are systematically driving
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Fig. 1: Characteristics of truck observation data (note various logarithmic axes).

https://international.fhwa.dot.gov/pubs/pl07028


Understanding Behavioral Patterns in Truck Co-Driving Networks 5

together, we employ the following definitions. When applied in sequence, they
serve as the steps to reduce the candidate set of all node (truck) pairs to the
set of systematically co-driving node pairs that form the links of the co-driving
network.

Definition 1. Co-occurrence of trucks a and b takes place if two trucks are at
the same place, i.e., their location attribute is identical, so `a = `b.

Definition 2. Co-driving trucks are those co-occurrences (a, b) of trucks that
take place within a time window of at most ∆tmax, so |ta − tb| ≤ ∆tmax.

Definition 3. Systematically co-driving trucks are those co-driving trucks (a, b) ∈
E occurring at least Θ > 0 times.

Thus, to derive the co-driving network, we must set parameters ∆tmax and Θ.
An intuitive guess would say that ∆tmax could range anywhere from five sec-

onds up to one minute, depending on how close to each other trucks drive. We
derive the right parameter setting in a data-driven manner. In Figure 2 network
characteristics are shown for increasing values of ∆tmax. Definitions of these
metrics, all common in the field of network science, can be found in [1]. Recall that
a high value for ∆tmax will result in a high probability that a pair of co-occurring
trucks is added by chance. Therefore we choose to keep the value relatively low,
namely at ∆tmax = 8 seconds. At this value the density of the resulting network
is lowest, while the giant component’s size compared to the full network (in terms
of both nodes and edges) has become stable. Other network metrics such as the
diameter and the average distance of the giant component also stabilize around
this value, as can be seen in Figure 2.

We expect the probability that two trucks randomly co-drive twice is suffi-
ciently small. Therefore, we identify non-random and thus systematic co-driving
by setting Θ = 2. Section 3.4 reports various robustness checks for the parameter
settings.

3.3 Co-driving Network

The co-driving network is an undirected weighted network G = (V,E,w), where
V is the set of all trucks that is involved in a co-driving activity at least once. For
a truck pair (a, b) ∈ E the weight indicates the number of times the two trucks
drove together. For this value holds that wa,b ≥ Θ as required by Definition 3. We
furthermore computed several attributes for each truck from the raw measurement
data, resulting in the following set of attributes per node:

– country, directly derived from the license plate
– median truck speed (ṽ)
– the number of different locations where the truck was observed (n`)
– the location where the truck was most frequently observed (`max)

In the remainder of this paper we investigate the structure of the co-driving
network and the extent we observe assortative behavior with respect to these
attributes.
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Fig. 2: Co-driving network statistics for increasing values of time window ∆tmax.

3.4 Robustness Checks

We validate our choice of ∆tmax = 8 seconds by assessing whether two metrics
from the raw truck measurement data differ between the non-systematically
(wa,b < 2) and systematically (wa,b ≥ 2) co-driving truck pairs.

The first metric is ∆v: the speed difference |va− vb| between two co-occurring
trucks within ∆tmax. We would assume that trucks who drive systematically
together for longer distances would have a lower value of ∆v as their speed needs
to be aligned. In Figure 3a we observe that this is indeed the case, where the
result is most obvious for smaller values for ∆tmax, up to 8 seconds.

The second validation metric is whether the considered pair of trucks is
driving on the same lane or not, i.e., whether for a truck pair (a, b) it holds that
ha = hb. In case of systematic co-driving behavior it is assumed to be more
likely that two trucks are present in the same lane, since they do not have to
overtake each other to drive together. Figure 3b shows that indeed the fraction
of trucks driving on a different lane (ha 6= hb) is more than two times higher for
non-systematic co-driving than for systematic co-driving trucks.

Concluding, these robustness checks convince us that the derived co-driving
network captures true systematic co-driving behavior.
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Fig. 3: Robustness checks for establishing systematic co-driving.

3.5 Regional Co-Driving Network

Although trucks from various countries are observed in our data, we have ad-
ditional information on Dutch trucks, obtained from the Netherlands Vehicle
Authority (RDW). Therefore we also consider the Dutch regional co-driving
network consisting of trucks for which the country attribute was equal to NL
(59% of the nodes) and all systematic co-driving links between these trucks,
having the following additional attributes:

– city where the truck is registered
– empty mass mempty of the truck
– maximum mass mmax of the truck
– capacity of the truck
– company that owns the truck
– registration date (regdate)
– the 4-digit (postal) zip code of where the vehicle is registered. Attributes

zip1, zip2, zip3 and zip4 each indicate the location with a higher geographic
precision.

4 Approach

Here we describe the techniques used to understand systematic co-driving behavior
from a network perspective. We will start with outlining how node assortativity
can explain the driving forces in edge formation in Section 4.1, followed by the
approach to detect and understand communities within the co-driving network
in Section 4.2.

4.1 Network-Driven Understanding of Co-Driving Behavior

We will use assortativity to investigate what type of common attributes explain
the formation of links in the co-driving network. Assortativity is a measure of the
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preference of nodes in a network to connect with other nodes that are alike in
some way [12]. The assortativity metric ra can be computed for each nominal and
numerical attribute a of the network using the definitions in [11]. It should be
noted that degree assortativity is the assortativity computed for the (numerical
attribute) degree, so the number of connections of the node.

An assortativity value ra closer to 1 indicates that nodes have more links to
nodes that have equal attribute a. A value closer to -1 indicates disassortivity,
meaning that nodes with different values for attribute a are more likely to be
connected. An assortativity of 0 for an attribute means that there is no preferential
attachment of edges between nodes based on the value of attribute a.

4.2 Community-Driven Understanding of Co-Driving Behavior

To better understand the structure of the co-driving network, we investigate the
communities in this network, which can provide insights in the different groups
of truck drivers that together form the network. As we will show in Section 5,
our network has a modular structure with a clear division into communities. To
detect these communities, we use the well-known Louvain algorithm [3]. It takes
as input the structure of a weighted network, and outputs an assignment of each
node to a community. It furthermore has a resolution parameter γ that dictates
whether a more fine-grained or coarse-grained division into communities should
be found [9].

The Louvain algorithm uses heuristics to optimize the so-called modularity
value Q, indicating the quality of the division of the network into communities. A
modularity value close to 1 indicates that there are more edges within communities
and fewer edges between communities. When adjusting the aforementioned
resolution parameter, the value of modularity and with that the number of
discovered communities C changes. At different resolutions γ, very similar values
of Q can be measured, each with a different number of communities C. This
so-called modularity landscape must be explored to obtain the division of the
network into communities that best explains the formation of groups in the
underlying system [6].

To explore these solutions automatically, we propose to use the available
node attribute information. We then determine for each community and for
each attribute, the assortativity within the subgraph of nodes induced by that
community. Subsequently, for each community we take the highest attribute
assortativity. We average this value over all communities, obtaining the proposed
metric of average maximal community assortativity R, defined as follows:

R =
1

C

∑
c

max
a

rG(c)
a

Here, C is the number of communities, c is one of the communities (defined as
the subset of nodes in this community), a is an attribute, G(c) is the subgraph

induced on the nodes in community c and r
G(c)
a is the assortativity of attribute a

in subgraph G(c). Based on the value of R for different divisions of the network
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into communities as a result of varying the resolution parameter γ, we select the
division into communities for which R is highest.

5 Results

We start this section with an analysis of the co-driving network structure in
Section 5.1. The results of applying the two approaches to understanding the
formation of links outlined in Section 4 are discussed in Section 5.2 and Section 5.3.

5.1 Network Statistics

Network metrics, of which definitions can be found in [1], were computed using
NetworkX (networkx.github.io), whereas distance metrics were computed us-
ing teexGraph (github.com/franktakes/teexgraph). The python-louvain package
(github.com/taynaud/python-louvain) was used for community detection.

In Table 1 we list basic network statistics for the complete network and the
regional co-driving network of measured Dutch trucks. We note that the majority
of activity is captured in the giant component. The degree distribution for both
networks is given in Figure 4, showing a power law distribution, suggesting that
the co-driving network is scale-free. This means that a few truck drivers drive
with a large number of other trucks, whereas the majority only does so with a
relatively small number of others. In addition, the weight distribution in Figure 4
shows that some co-driving trucks actually very frequently drive together. The
diameter (which is affected by distant outliers) is quite high, whereas the average
distance is not as low as 6 as is common in many real-world networks, but is with
a value of 9 still substantially low given the size of the network. The power law
exponent of the degree distribution is 3.6. Together, these three metrics indicate
that although the network has a very skewed degree distribution, nodes are not
that as close to each other as in other real-world networks, hinting at a more
modular structure, which we will investigate further in Section 5.3.
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Fig. 4: Degree (L) and weight (R) distribution of the full and regional network.
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Table 1: Statistics for full and regional network and their giant component (GC).

Metric Full Network Regional Network

Number of nodes 65,290 35,706
Number of nodes (GC) 37,858 22,511

Number of edges 68,958 36,885
Number of edges (GC) 51,730 30,851

Density 3.2 × 10−5 5.8 × 10−5

Density (GC) 7.2 × 10−5 1.2 × 10−4

Diameter (GC) 31 28
Average distance (GC) 9 9

Clustering coefficient 0.06 0.07
Power law exponent 3.58 3.61

5.2 Attribute Assortativity

Applying the metric of node assortativity discussed in Section 4.1 resulted in
the values reported in Table 2. The positive value for degree assortativity may
indicate that actively co-driving trucks are preferentially connected to other active
co-driving trucks. Geographic information available about the trucks appears
to perform best in explaining systematic co-driving behavior, with substantially
high assortativity metrics for the zip code attributes in the regional network, but

Table 2: Assortativity of node attributes introduced in Section 3.3 and Section 3.5.

Attribute Type Full Network Regional Network

degree numeric 0.12 0.12
country 17 categories 0.56 -

ṽ numeric 0.55 0.34
n` numeric 0.45 0.40

`max 17 categories 0.25 0.21
city 1,319 categories - 0.33

mempty numeric - 0.30
mmax numeric - 0.35

capacity numeric - 0.32
company numeric - 0.29
regdate numeric - 0.13

zip4 1,975 categories - 0.32
zip3 718 categories - 0.33
zip2 90 categories - 0.35
zip1 9 categories - 0.41



Understanding Behavioral Patterns in Truck Co-Driving Networks 11

in particular a value of 0.56 for the country attribute in the full network. So, truck
drivers from the same country, but also from the same city (e.g., because they
live there, or are based there) are more likely to systematically drive together.

5.3 Average Maximal Community Assortativity

The results of applying community detection to the giant component of the full
network are shown in Figure 5. It shows for increasing resolutions the number
of communities and the modularity value. A maximum value of Q = 0.86 is
found for resolution γ = 1. This high value is a second piece of evidence that
our co-driving network is highly modular. We observe how there are a number
of solutions with a similar modularity value, but a very different number of
communities.

To better understand these findings, we look at the average maximal com-
munity assortativity R (see Section 4.2) shown in the bottom right of Figure 5.
Although at γ = 1 the highest modularity is found, at we see that for γ = 2
(as opposed to lower values of γ), the best community division is obtained in
terms of explainability using node attribute assortativity. For this value of the
resolution, we find that 52 of the total 120 communities are best described using
the country attribute, whereas the remaining attributes ṽ, n`, and `max explain
30, 29 and 9 communities respectively.
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communities C (top left), modularity value Q (top right), average community size
(bottom left) and average maximal community assortativity R (bottom right).
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6 Conclusion

In this paper we described how a co-driving network can automatically be
extracted from truck measurement data. The network exhibited typical real-
world network properties such as a giant component and a scale-free degree
distribution. Positive degree assortativity hinted at actively co-driving trucks that
are preferentially connected to other trucks. Distance metrics as well as community
detection showed a highly modular structure. Node attribute assortativity in turn
showed how geographical attributes such as country and region of origin best
explained co-driving links. Furthermore, using the proposed metric of average
maximal community assortativity, we found that the network’s highly modular
community structure can be explained using different attribute’s assortativity in
each community, again dominated by geographical attributes.

In future work, we plan to further investigate the relation between the observed
network characteristics and the considered domain, in particular in relation to
similar network studies. In addition, we will extend our work to incorporate
timestamps to investigate the co-driving network’s dynamics. This could shed
light on which truck drivers initiate co-driving behavior and under what conditions
behavior diffuses to other nodes. A better understanding of how fast and through
which drivers specific behavior spreads would enable interventions to educate
drivers with best practices, saving fuel and reducing traffic congestion.
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