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ABSTRACT
Inspections of marine ships play a pivotal role in maintaining a
clean and safe worldwide environment. In this work, we will con-
tribute to insight regarding the inspection regime by examining
ship movements in Europe using network analysis. This research
will focus on the connection between ships, ports, and inter-ship
timing. From a data set encompassing more than 3 million measure-
ments of ships calling at more than 2000 ports in Europe between
2015-2019, we extract four different kinds of networks. First, in
the ship-visiting network, nodes are ports and edges represent
ships sailing between two ports. The obtained ship-visiting net-
work has various properties common to the global ship network.
Also, regional communities were found in the ship-visiting network,
indicating ships have a preference for sailing in specific regions
in Europe. Second, in the port-sharing network, nodes are ships
and edges represent two ships visiting the same ports. Third, in the
route-sharing network nodes are ships and edges represent two
ships sailing the same routes. The port-sharing network and route-
sharing network show ships tend to be selective in the ports they
visit. Lastly, in the co-sailing network nodes are ships and edges
represent pairs of ships that are systematically sailing together.
There is some form of co-sailing behaviour present in Europe. This
study improved understanding of ship traffic behaviour, which has
implications for society and the environment. The results obtained
can give suggestions on more effectively covering every ship dur-
ing inspections. European collaboration between inspectorates is
key to use limited inspection capacity to target the whole shipping
industry.

KEYWORDS
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network analysis

1 INTRODUCTION
Inspections of marine ships play a pivotal role in maintaining a
clean and safe worldwide environment. This oversight comes with
a challenge, because often the number of ships to inspect is larger
than staff capacity allows. We propose a data-driven approach. In
order to facilitate this, an understanding of the dynamics of the
marine transport sector is required. This research will focus on
the connection between ships, ports, and inter-ship timing. From a
data set encompassing more than 3 million measurements of ships
calling at more than 2000 ports in Europe between 2015-2019, we
extract different kinds of networks. An overview of the networks
that are investigated in this paper can be found in Table 1. We
will explain the exact definitions and threshold to construct these
networks in more detail in Section 3.3.

The global cargo ship network (GCSN) was studied by Kaluza
et al. [17], defining a complex system as the network where nodes
are ports and a link connects them if ship traffic passes between
the ports. The data set used in this study is in principle a subset of
the data set that was used to obtain the GCSN: Kaluza et al. used
data regarding the world wide shipping network, while the data set

used in this paper only includes information about ships calling at
European ports. It is thus interesting to compare the characteristics
of the GCSN with the network of only European ports. In the ship-
visiting network 𝐺𝑣𝑖𝑠𝑖𝑡𝑖𝑛𝑔 , nodes represent ports and the weight of
edges will be the number of times ships sail between two ports. For
this part, the main question is:

‘Does the subnetwork of European ports have the
same characteristics as the GCSN?’.

This will be answered by investigating if the network contains
the small world property and the scale-free property. Also commu-
nities will be investigated to see whether ships have the tendency
to sail in certain regions in Europe.

In addition to a network where nodes are ports, also two network
where nodes are ships are made. Two different edge representations
will be investigated. In the port-sharing network 𝐺𝑝𝑜𝑟𝑡 , an edge
is present between two ships if those ships visited the same ports
in this data set. In the route-sharing network 𝐺𝑟𝑜𝑢𝑡𝑒 , the edges
between two ships will represent a route from one port to the
other. For example, ship A and ship B will have a link if both ships
travelled between Rotterdam and Antwerp. The port-sharing and
route-sharing networks will allow us to better understand what
characteristics ships have in a network. The main question for these
networks is:

‘What are the patterns of ship movements in Europe?’
This question will be answered by investigating if the network
contains the small-world and scale-free property.

Lastly, we will investigate if there is a co-sailing network present.
There is the expectation that there is a dependency in timing, by a
process of smaller cargo ships feeding larger shiploads, mostly con-
tainer ships. A study related to this was conducted by de Bruin et
al. [11], in which the co-driving behaviour of truck drivers was ex-
amined using network analysis. In this co-sailing network𝐺𝑐𝑜−𝑠𝑎𝑖𝑙 ,
the nodes will represent ships. A co-occurrence of ships takes place
when two ships are at the same location. Co-sailing is when this
co-occurrence of two ships happens within a small time window.
Those pairs of co-sailing ships that occur more than once, are de-
fined as systematic co-sailing ships. The edges will represent this
systematic co-sailing behavior in the co-sailing network. The main
question for this part is:

‘Is co-sailing behaviour present in Europe, and if it is,
what factors can explain this?’.

In particular, attribute assortativity and communities will be inves-
tigated.

The remainder of this paper is organized as follows. After dis-
cussing related work in section 2, section 3 explains how the data
was pre-processed and the network was constructed. Then, sec-
tion 4 provides details on the results obtained. Conclusions and
suggestions for future work are provided in section 5.

2 LITERATURE REVIEW
We start this section with describing general network science liter-
ature in Section 2.1. Then related work specifically to networks of



Network name Symbolic name Nodes Weight of edges

Ship-visiting network 𝐺𝑠ℎ𝑖𝑝 Ports Number of times ships sail between two ports

Port-sharing network 𝐺𝑝𝑜𝑟𝑡 Ships Number of different ports both ships visited

Route-sharing network 𝐺𝑟𝑜𝑢𝑡𝑒 Ships Number of different trajectories both the ships sailed

Co-sailing network 𝐺𝑐𝑜−𝑠𝑎𝑖𝑙 Ships Number of times two ships systematically sailed together

Table 1: Overview of network names and what nodes and weights of edges represent in each network

ships is described in Section 2.2. Lastly, network specific techniques
that will be used in this paper are explained in Section 2.3.

2.1 Network science in general
Most real-world networks have common topological properties.
These include a community structure, the scale-free property, and
the small world property [12].

In random networks, the degree distribution is expected to be a
binominal distribution where the majority of nodes are linked to
a similar number of other nodes. In real world networks however,
one common feature is the presence of hubs, which are nodes with
a number of edges that greatly exceeds the average. The presence
of hubs creates a long tail in the degree distribution. Such a degree
distribution follows a power law distribution and is characteristic
for scale-free networks [7].

In comparison, networks that have the small-world property
have a higher density of edges as a result of their smaller diameter
and higher clustering coefficient as defined by Watts and Strogatz
[18]. In order to state that a network has the small-world property,
the network has to have a higher average clustering coefficient
than a random network with the same number of nodes and edges.
A social network is defined to be a small-world network [14].

Ducruet and Zaidi [13] state that most real-world networks are
both small-world and scale-free as a result of the combination
of vertical (hierarchy) and horizontal (community) linkages. Also
Barabasi et al. [8] state that the distances are smaller in a scale-free
network than the distances in a similar random network, indicating
that the presence of hubs increases the network’s probability of
having the small-world property. Broido and Clauset [10] however
state that real-world networks are rarely scale-free networks and
that log-normal distributions are a equally as good or a better fit
than power laws. Also Barabasi et al. [8] state that in real systems a
degree distribution that follows a pure power law is rarely observed.
A truncated power law showing a low degree saturation and high
degree cutoff is more frequently observed in degree distributions
of real networks.

According to Amaral et al. [6] there are three types of small-
world networks: scale-free with power law, truncated scale-free,
and single-scale networks. They explain that for airline networks,
each airport will limit the number of landings/departures per hour
because of space and time constraints. The number of possible edges
attached to a given node is thus limited by a restricted capacity of a
node and the physical costs of adding edges, reducing the number
of hubs. Similar reasons apply to the maritime transport network.
Therefore the chance that the maritime transportation network is

found to be truncated scale-free is larger than for it to be scale-free
with a pure power law.

2.2 Network science in shipping networks
Network science has been used in various papers in order to analyse
the global cargo ship network (GCSN). Networks that are made
in these papers have ports as nodes. For this reason, the papers
discussed next are most relevant to the ship-visiting network that
is constructed in this paper.

The GCSN was studied by Kaluza et al. [17], defining a complex
system as the network where nodes are ports and a link connects
them if ship traffic passes between the ports. The ships included
in this study are of the types containers, bulk dry carriers, and
oil tankers and have a minimum volume of 10,000 GT. The study
shows the GCSN possesses the small-world property [18], which
means the network has short path lengths despite a large clustering
coefficient. This indicates ship traffic appears to be an ideal system
of unidirectional, often circular, trajectories, rather than being com-
posed by back-and-forth journeys. The GCSN’s degree distribution
does not follow a pure power law, and is therefore not exactly scale-
free. The distribution of link weights does follow approximately
a power law. This suggests the presence of hubs, which are a few
substantial ports with a high clustering coefficient that the smaller
ports use to transact their cargo. Characteristic movement patterns
of different ship types were found: while container ships typically
follow a rigid order, bulk dry carriers depend on the current supply
and demand and thus often adjust their plan on short notice. Also
oil tankers depend on momentary market trends. Several communi-
ties were detected, highlighting important canals and the division
of groups of ports based on geographical location.

Hu et al. [16] also studied the GCSN, with a network where
nodes are ports and container liners connecting the ports if they
sailed between them. The study concludes the degree distribution
follows a truncated power law distribution, which is in accordance
with all kinds of other transportation networks. The GCSN was
characterised as a small-world network, because of a small average
shortest path and a high clustering coefficient. The small-world
property was not defined or mentioned before it was stated the
GCSN is a small-world network. Additionally, the hierarchy struc-
ture and rich-club phenomenon were revealed through analyzing
weighted clustering coefficient and weighted average nearest neigh-
bours degree. The hierarchy structure in this network is that ports
with a low degree belong to interconnected communities and thus
have a high clustering coefficient, while hubs connect many ports
with a small clustering coefficient, so ports that are not directly
connected. Since the weighted clustering coefficient is larger than



the unweighted clustering coefficient, it is stated that the rich-club
phenomenon is present, indicating that ports with a high degree
have the tendency to form links with other ports with a high degree.

Xu et al. [19] investigated the ship-transport network of China
and included only the passenger liners, excluding the cargo trans-
port that most other studies and the present study have focused on.
They state the degree distribution follows a truncated power law
and the network displays small world properties.

The co-sailing network made in this paper is based on the co-
driving network made by de Bruin et al. [11]. In this network, nodes
are trucks and edges represent pairs of trucks that are systemati-
cally driving together. Systematically driving together follows the
definition of two trucks being at the same highway location within
8 seconds of each other more than once. The co-driving network
structure has various properties common to real-world networks,
such as a scale-free degree distribution. This means that the pres-
ence of hubs, indicating a few truck drivers drive with a large
number of other trucks, whereas the majority only does so with a
relatively small number of others. Distance metrics as well as com-
munity detection showed a highly modular structure. They found
high assortativity metrics for the country attribute, meaning truck
drivers from the same country are more likely to systematically
drive together.

To the best of our knowledge, this paper is the first to investigate
the phenomenon of ship co-sailing using network science methods
and techniques.

2.3 Background
In this section the formal notation of the graph structure is intro-
duced. This formalization was adopted from Barabasi et al [8].

A network can be formally mathematically represented as a
graph. Therefore, the terms ‘network’ and ‘graph’ will be used
interchangeably in the following section. In a graph, each object
is called a node. If a connection is present between two distinct
nodes, there will be an edge (or link) in the graph. Formally, we
define a graph G as an ordered pair 𝐺 = (𝑉 , 𝐸) where 𝑉 is a set of
nodes, 𝐸 is a set of edges, and each edge connects a pair of nodes
[8]. In a directed graph, the edge from a node to another node is
directed. Two nodes are called connected, or adjacent, if they share
a common edge, in which case the common edge joins the two
nodes. The degree of a node is the total number of nodes that share
an edge with that node [8]. The nodes that share and edge with
that node is also called the neighbourhood of a node. The average
degree of a directed graph is calculated as 𝑘 = 𝐸/𝑉 , which is the
total number of edges divided by the total number of nodes [8]. The
density of a graph 𝐺 = (𝑉 , 𝐸) measures how many edges are in set
𝐸 compared to the maximum possible number of edges between
nodes in set𝑉 [8]. The length of a path is the number of edges that
it uses. For example, the length of the path between port𝐴 and port
𝐷 , is three if port 𝐴 is connected to port 𝐵, port 𝐵 is connected to
port 𝐶 , and port 𝐶 is connected to port 𝐷 , and there are no other
ports/edges connecting ports 𝐴 and 𝐷 .

A graph is connected if for every pair of nodes, there is a path
between them [8]. A directed graph is strongly connected if every
node is reachable from every other node following the directions
of the edge. In other words, if for every pair of different nodes 𝐴

and 𝐵 there exists a directed path from 𝐴 to 𝐵. A directed graph is
weakly connected if the graph is connected when considering it
as an undirected graph. In other words, for every pair of different
nodes 𝐴 and 𝐵 there exists an undirected path (possibly running
the opposite direction of the edge) from 𝐴 to 𝐵. If a network is
connected, the average shortest path length can be calculated and
is defined as the average number of steps along the shortest paths
for all possible pairs of network nodes.

The clustering coefficient is a measure of the degree to which
nodes in a graph tend to cluster together [8]. It measures how
complete the neighbourhood of a node is. The neighbourhood,
or number of neighbors, of a node 𝑛, is the set of nodes that are
connected to𝑛. If every node in the neighbourhood of𝑛 is connected
to every other node in the neighbourhood of 𝑛 (closed triangles),
then the neighbourhood of 𝑛 is complete and will have clustering
coefficient 1. If no nodes in the neighbourhood are connected, then
the clustering coefficient will be 0. The clustering coefficient in a
directed network can be calculated as: 𝑐𝑖 = 𝐸𝑖/(𝑘𝑖 (𝑘𝑖 − 1), where 𝑐𝑖
is the clustering coefficient of node 𝑖 , 𝑘𝑖 is the number of neighbors
of the node 𝑖 , and 𝐸𝑖 is the number of directed connections that
exist between the 𝑘𝑖 neighbors [8]. The clustering coefficient 𝐶 for
the whole network is obtained by averaging 𝑐𝑖 over all nodes of the
network. Communities are defined as groups of nodes that share
many edges within the groups but few edges between different
groups.

3 METHODOLOGY
Here we explain how the networks have been constructed. We start
in Section 3.1 with the characteristics of the data. In Section 3.2
we describe how the data was prepared. Finally, in Section 3.3 we
explain how the networks were constructed and how parameters
were set.

3.1 Data description
In this paper we analyse a data set that was gathered by the Eu-
ropean Maritime Safety Agency [1] over the period of five years,
namely between 1-1-2015 and 30-10-2019, detailing the presence
of more than 33,000 ships. The data set consist of more than 3,8
million measurements and contains all ships that visited one of
2030 ports in Europe. The data set consists of an unique ship ID,
the type of ship, the port where it calls, the estimated time as well
as the actual time of both the arrival and departure. It also contains
information about the volume of the ships and its flag state.

3.2 Data preparation
The effects of the following selections on number of unique ships
and number of port calls remaining in the data set can be found in
Table 2. Other data cleaning steps that were taken can be found in
Appendix A.

This study focuses on ship types that are present in the global
maritime transport economy and that the Inspectorate of Human
Environment and Transport oversees. Therefore several ship types
have been excluded from the data set. This excluded approximately
7000 unique ships. The remaining ship types are divided into six
categories based on domain knowledge, which are described in
Appendix A.



After this selection on ship types, port calls of ships where the
current port and previous port are the same were excluded. This
returning to the same port can have several reasons, for example
the ship might have left Europe or has been at anchorage. Beside
the fact that this behaviour is not informative for the network,
excluding those port calls also has the advantage of preventing
self-loops in the network. This step excluded nearly 2000 ships.

For the ship-visiting network, port-sharing network, and route-
sharing network there is the expectation that ships with a volume
less than 10,000 gross tonnage (GT) do not play a significant role in
the global maritime transport economy based on domain knowledge
and literature [17]. Also computationally it is beneficial to exclude
ships with a volume of less than 10,000 GT. After excluding ships
with a volume less than 10,000 GT the data set contains 16,524
unique ships with in total 1,411,993 port calls at 990 ports. The
median number of port calls per unique ship is 15. In the co-sailing
network there will be no limit of 10,000 GT, because the expectation
is that smaller cargo ships feed larger shiploads, and those smaller
ships would thus be excluded if the minimum of volume is applied.
Figure 1 shows themedian volumes per ship type of all ships present
in the original data set. The red line indicates 10,000 GT and shows
that almost all ship types that are being excluded based on domain
knowledge in most cases don’t have a median volume above 10,000
GT. This confirms that deleting those ship types does not have
a large impact on the transportation network that is viewed as
relevant. Figure 2 shows the frequency distribution of volumes of
ships, after selecting on ship type and no return to same port, where
the red line indicates 10,000 GT.

For the port-sharing network, route-sharing network and co-
sailing network only the port calls from the year 2019 were used
for computational reasons. This is not expected to have an effect
on the network characteristics, since every year in the data set is
similar. In 2019, the median number of unique ports a ship visits is
4, the mean is almost 6.

3.3 Network construction
Network metrics were computed using NetworkX [15]. For every
network that is constructed the clustering coefficient and average
shortest path were calculated in order to determine if the network
has the small-world property. Also, plots were made of the degree
distributions and the link weight distributions in order to investi-
gate whether the distributions reveal a power law relationship. If
the degree distribution follows a (truncated) power law distribution
and the power law exponent is negative, it is stated the network
possesses the scale-free property. To determine whether the best fit
for the degree distribution is a power law or another distribution,
the powerlaw package of Python was used [5]. For the ship-visiting
network and co-sailing network, communities were investigated
with the Louvain method [9]. Attribute assortativity was used for a
network-driven understanding of the co-sailing network.

For the ship-visiting network, port-sharing network, and route-
sharing network, an edge was only included if the weight was
three or more. The aim of this study is to find systematic behaviour
instead of random behaviour. Two ships sailing between two ports is
considered as possible random behaviour, while three ships sailing
between two ports is considered as relevant. The same reasoning

Figure 1: Median volume per ship type for unique ships,
measured in gross tonnage, where the red line indicates
10,000 gross tonnage.

Figure 2: Frequency distribution of volumes of ships, mea-
sured in gross tonnage, where the red line indicates 10,000
gross tonnage.

applies to the port-sharing and route-sharing networks: two ships
visiting one or two of the same ports or sailing one or two of the
same trajectories is considered as possible random behaviour, while
two ships visiting three of the same ports or sailing three of the
same trajectories is considered as relevant.



Filter Unique ships remaining Port calls

Original 33,178 3,882,638

Ship type 25,351 3,619,804

No return to same port 23,507 2,983,111

Minimum 10,000GT 16,524 1,411,993

The calendar year 2019 10,214 264,862

Table 2: Effects of each data pre-processing step on the number of unique ships and port calls remaining in the data set

We will use assortativity for a network-driven understanding of
co-sailing behaviour. Assortativity is a preference for a network’s
nodes to attach to other nodes that are similar in some way. This
will allow us to investigate what type of common attributes explain
the formation of links in the co-sailing network.

3.3.1 Co-sailing network parameter settings. In the co-sailing net-
work, nodes are ships and edges represent systematically co-sailing
ships. A co-occurrence of ships takes place when two ships are at
the same location. Co-sailing is when this co-occurrence of two
ships happens within a small time window. The time window is
the maximum time interval between the arrival of one ship and the
arrival of the other ship. The ships are not required to be at the
same port at exactly the same time, because the cargo of ships is
not being transferred directly from ship to ship, but via land. This
is also why the retention time of ships in a port is high: most ships
are for a long period of time in a port, because the discharging and
loading of cargo takes time. It’s relevant to see whether the cargo
can be transferred, not whether the ships have to be at literally the
same time at a port.

Those pairs of co-sailing ships that show co-sailing behaviour
more than a certain value that has to be determined, are defined
as systematic co-sailing ships. The edges represent this system-
atic co-sailing behavior in the co-sailing network. The network is
undirected weighted, where the weight is the number of times the
two ships systematically sailed together. The following definitions
are employed to determine which pairs of ships are systematically
sailing together.

Definition 1. A co-occurrence of ships takes place if ship A and
ship B are at the same port.

Definition 2. Co-sailing ships are those co-occurrences of ships
that take place within a time window of at most 𝑡𝑚𝑎𝑥 .

Definition 3. Systematically co-sailing ships are those co-sailing
ships that occur at least 𝜃 times.

Accordingly, to derive the co-sailing network, parameters 𝑡𝑚𝑎𝑥

and 𝜃 must be set.
When investigating the port call data to determine 𝑡𝑚𝑎𝑥 , it ap-

pears there is a clear distinction between the ship belonging to the
ferry category, refrigerated cargo ships, and high speed cargo ships
on the one hand and all other categories on the other hand in terms
of how many hours a ship stays at a port. The ships that have a low
retention time at a port are excluded to prevent a over-occurrence of
these ships in the network. Other studies investigating ship traffic

networks have also focused on either cargo ships or passenger ship
because of differences between these categories [13, 16, 17, 19].

Since the median retention time in a port is 26 hours, the expec-
tation is that the right setting for 𝑡𝑚𝑎𝑥 could range between 1 hour
and 48 hours, depending on how close to each other ships enter the
port. We derive the right parameter setting in a data-driven manner.
Figure 3 shows the results of network metrics density, diameter,
and average distance for increasing values of 𝑡𝑚𝑎𝑥 , when using 𝜃 =
2. A high value of 𝑡𝑚𝑎𝑥 will result in a high probability that a pair of
co-occurring ships is seen as co-sailing by chance. We can conclude
that the density is almost at its minimum at 𝑡𝑚𝑎𝑥 = 24 hours, which
means from 24 hours onwards the network has the least chance of
being a random network. Also, the diameter increases strongly at
36 hours, which means from 36 hours onwards the network has a
chance of being a random network. Combining these findings leads
to setting the value for 𝑡𝑚𝑎𝑥 to 24 hours, with the lowest density
value combined with the lowest diameter value.

In Figure 4 network characteristics are shown for increasing
values of 𝜃 , when using 𝑡𝑚𝑎𝑥 = 26. We can conclude the network’s
density is at a minimum at 𝜃 = 2, indicating at this value the network
is the most non-random. Also, since the diameter is lower at value
2 than 3, the network at 𝜃 = 2 can be regarded as a non-random
network. We expect the probability that two ships randomly co-sail
twice is sufficiently small. Therefore, we identify non-random and
thus systematic co-sailing by setting 𝜃 = 2.

4 RESULTS
We start this section with an analysis of the ship-visiting network
in Section 4.1. Then the characteristics of the port-sharing network
can be found in Section 4.2. In Section 4.3 the analysis of the route-
sharing network is described. Finally, Section 4.4 shows the results
of the co-sailing network. In each section first general information
about the network will be discussed, followed by the investigation
of the small-world property and then the scale-free property. All
results are described in Table 3.

4.1 Ship-visiting network
In this network the nodes represent ports. Two ports are connected,
i.e. have an edge between them, if a ship has sailed from one port
to the other. This edge is directed: it points from the port the ship
departed from to the port the ship sailed to. The weight of edges is
the number of times ships sail between two ports. An edge was only
included if the weight was three or more. The number of nodes and
thus ports in this network is 728. There are 18,142 edges present.



Metric Ship-visiting
network

Port-sharing
network

Route-
sharing
network

Co-sailing
network

Number of nodes 728 7358 4033 6614

Number of nodes (GC) 726 7341 3515 6541

Number of edges 18,142 1,224,972 74,804 112,979

Number of edges (GC) 18,140 1,224,962 74,178 112,942

Density (GC) 0.03 0.05 0.01 0.005

Diameter (GC) 7 6 16 9

Clustering coefficient 0.58 0.67 0.49 0.24

Average shortest path (GC) 2.49 2.25 3.77 3.23

Power law exponent -0.24 0.06 -0.27 -0.62

Table 3: Statistics of the networks used in this study and their giant component (GC)

Figure 3: Co-sailing network statistics for increasing values
of time window 𝑡𝑚𝑎𝑥 .

4.1.1 Small-world property. The network is not connected. The
largest weakly connected component, or giant component, however
consists of 726 nodes, which means that only 2 nodes of the whole
network are not connected to the giant component. The largest

Figure 4: Co-sailing network statistics for increasing values
of minimum occurrences 𝜃 .

strongly connected component has 666 nodes. The average shortest
path of the giant component is 2.49 which is considered small. This
is very similar to the average shortest path in the GCSN research,
which is 2.5.

The clustering coefficient in this network is 0.58, which is slightly
higher than in the GCSN where it was 0.49. Random networks



with the same number of nodes and links only yield a clustering
coefficient of 0.07 on average. The ship-visiting network - like the
GCSN - can be regarded as a small-world network possessing short
path lengths despite substantial clustering [18].

4.1.2 Scale-free property. The weighted degree distribution is, the
same as in the GCSN, not exactly scale-free as it doesn’t follow a
pure power law, as can be seen in Figure 5. The degree distribution
of the ship-visiting network follows a truncated power law distri-
bution [5]. The power law exponent is -0.24. This indicates that
the ship-visiting network has the scale-free property, and thus the
network has hubs. The two ports that have the highest weighted
degree, and thus function as hubs, are Rotterdam (the Netherlands),
with a weighted degree of 121,138, and Antwerp (Belgium), with a
weighted degree of 74,504. These ports are also the busiest cargo
ports in Europe [4].

Figure 6 shows the link weight distribution of the ship-visiting
network. A large majority of nodes have a low weight, but a small
number have a higher weight. This means that a lot of ports are
connected by in total a few ships sailing between them and a few
ports have a lot of ships sailing between them. The median weight
is 9. The highest weight is 22,073, which means at most 22,073
times ships sailed between two ports. In this network those ports
are Vanasadam (Estonia) and Helsinki (Finland) which have a ferry
route between them.

4.1.3 Community detection. Seventeen communities were detected
in the ship-visiting network using the Louvain method [9], of which
six communities consist ofmore than 20 ports. Themodularity value
is 0.64. Figure 7 shows these six communities, each in a different
colour on a map of Europe. The largest community, shown by the
red dots, contains 31% of all nodes in the network. The figure shows
the communities have a strong geographical base, meaning ports
are more densely connected to ports that are geographically close.
These geographical communities can explain the high clustering
coefficient: ports that are close have a relatively high density of
links.

Figure 5: The weighted degree distribution reveals a trun-
cated power law relationship for the ship-visiting network.

Figure 6: The link weight distribution shows most edges
have a lowweight, while only a few edges have a highweight
for the ship-visiting network.

Figure 7: The network plotted in geographical coordinates,
where the colours indicate communities. It is clearly visible
the communities have a strong geographical base.

4.2 Port-sharing network
The port-sharing network is a network where nodes are unique
ships and edges are present if the two ships visited the same ports.
The weight of the edge is the number of the same ports the two
ships visited. An edge was only included if the weight was three or
more. The port-sharing network contained 7358 nodes or unique
ships. There are 1,224,972 edges present.

4.2.1 Small-world property. The network is not connected, and
has 9 connected components. The giant component contains 7341
nodes out of the 7358 in total. The average shortest path for the
giant component is 2.25.

The average clustering coefficient is 0.67, which is considered
high. This means that when ship A is linked to ships B and C, there
is a very high probability that there is also a connection from B
to C, and thus that all these three ships visited the same port(s).



Figure 8: The weighted degree distribution shows no (trun-
cated) power law relationship for the port-sharing network.

Random networks with the same number of nodes and links only
yield a clustering coefficient of 0.04 on average.

The port-sharing network can be regarded as a small-world
network possessing short path lengths despite substantial clustering
[18].

4.2.2 Scale-free property. Figure 8 shows the weighted degree dis-
tribution of the port-sharing network does not follow a pure power
law or truncated power law distribution. The power law exponent
is 0.06. This means that there are more nodes with a large degree
and only a few nodes with a small degree. This is the opposite of a
scale-free network, where a few hubs are present.

Figure 9 shows the link weight distribution of the port-sharing
network. A large majority of nodes have a low weight but a small
number, known as hubs, have a higher weight. The median weight
is 3. The maximum weight of an edge present in the network is 46.
Which means that the two ships that visited the most same ports
visited 46 the same ports in 2019. For the port-sharing network this
means that most combinations of two ships only visited one or a
few of the same ports and only a few combinations of two ships
visited more of the same ports.

4.3 Route-sharing network
The route-sharing network is a network where nodes are unique
ships and edges are present if the two ships sailed the same routes.
The weight of the edge is the number of the same trajectories the
two ships travelled. An edge was only included if the weight was
three or more. The route-sharing network contained 4033 nodes or
unique ships. There are 74,804 edges present.

4.3.1 Small-world property. The network is not connected, as it
has 191 connected components. The network does have one giant
component of 3515 nodes out of the 4033 nodes in total. The average
shortest path of the giant component is 3.77.

The average clustering coefficient is 0.53, which is considered
high. This means that when ship A is linked to ships B and C, there
is a very high probability that there is also a connection from B to
C, and thus that all these three ships sailed the same trajectory or

Figure 9: The link weight distribution shows most edges
have a lowweight, while only a few edges have a highweight
in the port-sharing network

Figure 10: The weighted degree distribution reveals a trun-
cated power law relationship for the route-sharing network.

trajectories. Random networks with the same number of nodes and
links only yield a clustering coefficient of 0.009 on average.

The route-sharing network can be regarded as a small-world
network possessing short path lengths despite substantial clustering
[18].

4.3.2 Scale-free property. In Figure 10 the weighted degree distri-
bution of the route-sharing network follows a truncated power law
distribution [5]. The power law exponent is -0.27. This indicates
that the route-sharing network has the scale-free property.

In Figure 11 the link weight distribution of the route-sharing
network shows most ships have a very low weight and a few ships
have a higher weight. For the route-sharing network this means
that most combinations of two ships only sailed one or a few of the
same trajectories and only a few combinations of two ships sailed
more of the same trajectories. The maximum weight of an edge
present in the network is 43. Which means that the two ships that
sailed the most same trajectories had 43 of the same trajectories in
2019.



Figure 11: The link weight distribution shows most edges
have a small weight and a few edges have a high weight in
the route-sharing network.

4.4 Co-sailing network
A network where nodes are unique ships and edges are present
if the two ships systematically co-sailed was made. The weight of
the edge is the number of times the two ships co-sailed. Details of
the network construction and parameters can be found in Section
3.3. The co-sailing network contained 6614 nodes or unique ships.
There are 112,979 edges present.

4.4.1 Small-world property. The network is not connected, as it
has 37 connected components. The network does have one giant
component of 6541 nodes out of the 6614 nodes in total. The average
shortest path of the giant component is 3.23.

The average clustering coefficient of the giant component is 0.24.
Random networks with the same number of nodes and links only
yield a clustering coefficient of 0.005 on average.

The route-sharing network can be regarded as a small-world
network possessing short path lengths despite substantial clustering
[18].

4.4.2 Scale-free property. In Figure 12 the weighted degree distri-
bution of the co-sailing network follows a truncated power law
distribution [5]. The power law exponent is -0.62. This indicates
that the route-sharing network has the scale-free property.

In Figure 13 the link weight distribution of the co-sailing network
shows most ships have a very low weight and a few ships have
a higher weight. For the co-sailing network this means that most
combinations of two ships only co-sailed a few times and only a
few combinations of two ships co-sailed more often. The maximum
weight of an edge present in the network is 274. Which means that
the two ships that have co-sailed the most together did this 274
times in 2019.

4.4.3 Attribute assortativity. The chosen attributes to inspect the
assortativity of, are the ship type and the flage state of the ship.
The nodes in the co-sailing network only show a small positive
assortativity for ship type and flage state, being 0.08 and 0.02 re-
spectively. This means we cannot conclude that certain ship types
or ships with the same flag state are more likely to systematically
sail together.

Figure 12: The weighted degree distribution reveals a trun-
cated power law relationship for the co-sailing network.

Figure 13: The link weight distribution shows most edges
have a small weight and a few edges have a high weight in
the co-sailing network.

4.4.4 Communities. 51 communitieswere detected in the co-sailing
network using the Louvain method [9]. The five largest communi-
ties make up 95% of the network. The modularity value is 0.32.

Visual inspection of the frequency distributions of ship types
in the five largest communities shows that in some communities
certain ship types are more represented than in the distribution of
the whole network. These frequency distributions can be found in
Appendix B.

It is noted that ships with a small volume tend to have a higher
degree in the co-sailing network, which can be seen in Figure 14.
Investigating this, leads to the conclusion that the communities are
not driven by differences in ship volumes, which can be seen in Fig-
ure 15, since there is no considerable difference in the distribution
between communities.

5 CONCLUSION & DISCUSSION
In this paper we described how four networks can be extracted from
European port call data. First, we will discuss the conclusions of



Figure 14: The degree-volume scatter plot for the co-sailing
network.

Figure 15: The boxplot plot for the co-sailing network shows
there is no large difference in the distribution of volumes of
ships between the communities.

the ship-visiting network, port-sharing network, route-sharing net-
work, and co-sailing network which follow from results described
in Section 4. Then limitations of the present study and future work
are presented.

5.0.1 Ship-visiting network. The ship-visiting network shows com-
parable results as a global study on port networks. Both can be
regarded as a social network possessing the small-world property
and scale-free property. The small-world property means every port
in the network is connected to every other port in just a few steps.
This is also what was expected. The network shows the presence
of hubs and the two ports that are the biggest hubs are also in the
real-world the most busy ports. This indicates this data shows what
is generally considered as true, and allows us to use it for more
complex questions.

Geographical communities were found. The European inspection
regime does at this moment not take into account these regional
communities of ports. This can aid further development of this
system. The inspection regime would want to make sure the whole

shipping industry is targeted and to prevent being fixated on only
certain groups of ships.

5.0.2 Port-sharing network. Since the port-sharing network is not
scale-free, there are no hubs present. However, the network is rather
well connected, so most ships have a lot of links to other ships. It
appears that most ships only visit a small number of the same ports,
with a median of three. This means that ships have the tendency
to visit at least one port hub, and are therefore well connected to
all other ships. So, ships do not have the tendency to visit every
port, but ships tend to visit at least one port that has a lot of ships
coming to this port.

5.0.3 Route-sharing network. The network shows that most ships
only share routes with a few other ships. This means that while
ships ensure a highly connected network of ports through their
diverse sailing behaviour, as seen in Section 5.0.1, there is little sign
of shared routes.

From an environmental perspective it could thus be argued that
increasing efficiency through larger scale of ships and synchronized
routes is not a solution [3]: because it appears the shipping system
is already efficient, since this data does not show a lot of ships
sailing the same routes.

5.0.4 Co-sailing network. The co-sailing network contains typical
real-world network properties such as a scale-free degree distribu-
tion and the small-world property.

The co-sailing behaviour could not be explained by attribute
assortativity. This means we cannot conclude from the presented
analysis that certain ship types or ships with the same flag state
are more likely to systematically sail together.

Investigating network communities leads to the conclusion that
there is some form of co-sailing within communities. In contrast
to the low attribute assortativity, it is found that certain ship types
are more represented in some communities than in the whole net-
work. It is thus possible that ships of the same ship type do have a
preference of being together in communities.

5.0.5 Main conclusion. The research presented showed that net-
work analysis facilitates a better understanding of the shipping
industry. This can aid the inspectorate to target those ships that
show specific behavior. We suggest that European collaboration
between inspectorates is key to use limited inspection capacity to
target the whole shipping industry.

5.0.6 Discussion & future work. It is possible that there are port
calls present from ships that have been outside of Europe. These
port calls are included as successive trajectory of the ships. This
has been chosen because the only way to find out whether a ship
has been outside of Europe is to look at the travel time, meaning
how long the ship travelled from one port to another. If this travel
time is longer than anticipated, it could be the case that the ship
has been outside of Europe, but might be the case that the ship has
been at anchorage for a while, or waiting outside a port for the
most optimal price (oil tankers), or other reasons. Because there is
no way to know from this data, it was chosen to keep the port calls
with a longer travel time than expected in the data.

A possible limitation of the ship-visiting, port-sharing, and route-
sharing networks is that the threshold of adding an edge was set



to three, because it was considered relevant. Especially in the port-
sharing network you can see that this leads to a very densely con-
nected network without the scale-free property. The threshold
could haven been chosen in a data-driven manner.

For the co-sailing network the ferry categorywas excluded, while
the other networks do contain this category. Future work regarding
ship traffic behaviour should consider focusing on either ferry or
cargo categories, because of differences between the two.

Future work regarding co-sailing behaviour should consider
investigating whether this behaviour can be explained by the geo-
graphical preference of ships which was found in the ship-visiting
network. It is also interesting to investigate the properties of the
ships in the regional communities in the ship-visiting network
further, for example to examine if ships in a certain group are
non-compliant more often.
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APPENDIX
A DATA DESCRIPTION
In this appendix, additional data cleaning steps are described. The
data set contains 8 columns considered relevant to this study. These

columns are ship id, ship type, flag state, gross tonnage, time of
arrival, time of departure, current port, previous port.

The variable previous port was not present in the data set by
EMSA [1], but was added based on the sequence of port calls. Port
calls where time of arrival was later than time of departure were
excluded. Port calls where time of departure of the ship was after
time of arrival of the ship in another port were excluded.

If an observation had a missing value in any of the relevant
columns, it was excluded. Also, a unique ship was excluded if the
information in the columns ship type, flag state and/or gross tonnage
was not identical in all observations of that ship.

Coordinates of ports were found using Google Maps [2] and
connected to the port names present in the data set.

The categories that were mentioned in 3.2 are the following.
The bulk category includes bulk carrier ships. The tanker category
includes the ship types: chemical tanker, combination carrier, NLS
tanker, oil tanker, oil tanker/chemical tanker, oil tanker/NLS tanker.
The container category includes container ships. The category gas
carrier includes the gas carriers. The cargo category includes the
ship types: general cargo/multipurpose, high speed cargo, livestock
carrier, refrigerated cargo, Ro-Ro cargo. And lastly the ferry cate-
gory included the ship types: high speed passenger craft, passenger
ship, Ro-Ro passenger ship.

B RESULTS CO-SAILING NETWORK
Figures 16, 17, and 18 show frequency distributions of ship types of
the whole co-sailing network and two communities. It can be con-
cluded that Figure 17, and 18 show different frequency distributions
than 16.

Figure 16: Frequency dist for the whole network for the co-
sailing network.
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Figure 17: Frequency dist for community ’0’ for the co-
sailing network.

Figure 18: Frequency dist for community ’4’ for the co-
sailing network.
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